Math and LaTeX Rendering Tests
This page tests MathJax rendering with various equation types to ensure our LaTeX post-processing and MathJax configuration work correctly.
Inline Math
Here's some inline math: $E = mc^2$ and $f(x) = x^2 + 2x + 1$.
We can also test Greek letters: $\alpha$, $\beta$, $\gamma$, $\Delta$, $\Omega$.
Block Math
Basic Equations
$
\frac{d}{dx}\left( \int_{0}^{x} f(u) \, du\right) = f(x)
$
Matrix Equations
$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
ax + by \\
cx + dy
\end{bmatrix}
$
Summations and Products
$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$
$
\prod_{i=1}^{n} i = n!
$
Machine Learning Equations
Loss Function:
$
\mathcal{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2
$
Softmax Function:
$
\text{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}
$
Attention Mechanism:
$
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
$
Complex Equations with Multiple Lines
$
\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t}
\end{align}
$
Fractions and Nested Expressions
$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$
Underscores Test (Fixed by LaTeX Post-Processing)
These should render correctly with normal underscores:
$
\theta_1, \theta_2, \ldots, \theta_n
$
$
x_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}
$
Custom Commands Test
Testing argmin and argmax (should work with our MathJax config):
$
\hat{\theta} = \argmin_{\theta} \mathcal{L}(\theta)
$
$
x^* = \argmax_{x \in \mathcal{X}} f(x)
$
Vector Notation
$
\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}
$
$
\|\vec{a} - \vec{b}\|_2 = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}
$
Equation Numbering Test
The following equations should be numbered automatically:
$
F = ma \tag{1}
$
$
PV = nRT \tag{2}
$
$
\Delta S \geq 0 \tag{3}
$
Mixed Content Test
Here's a paragraph with inline math $\int_0^\infty e^{-x} dx = 1$ followed by a block equation:
$
\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e
$
And then more text with $\sin^2(x) + \cos^2(x) = 1$ to ensure proper rendering.